Skip to content

edge_funcs

Classes:

  • dre_edgemask

    Edgemask with dynamic range enhancement prefiltering.

Functions:

dre_edgemask

Bases: CustomEnum

Edgemask with dynamic range enhancement prefiltering.

Methods:

  • __call__

    Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

Attributes:

  • CLAHE

    Contrast Limited Adaptive Histogram Equalization.

  • RETINEX

    Retinex-based edgemask.

CLAHE class-attribute instance-attribute

CLAHE = cast('dre_edgemask', object())

Contrast Limited Adaptive Histogram Equalization. Based on the OpenCV implementation

RETINEX class-attribute instance-attribute

RETINEX = cast('dre_edgemask', object())

Retinex-based edgemask.

__call__

__call__(
    clip: VideoNode,
    tsigma: float = 1,
    brz: float = 0.122,
    *,
    sigmas: Sequence[float] = [50, 200, 350]
) -> ConstantFormatVideoNode
__call__(
    clip: VideoNode,
    tsigma: float = 1,
    brz: float = 0.122,
    *,
    limit: float = 0.0305,
    tile: int = 5
) -> ConstantFormatVideoNode
__call__(
    clip: VideoNode, tsigma: float = 1, brz: float = 0.122, **kwargs: Any
) -> ConstantFormatVideoNode
__call__(
    clip: VideoNode, tsigma: float = 1, brz: float = 0.122, **kwargs: Any
) -> ConstantFormatVideoNode

Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

This function serves as a wrapper around the retinex and vszip.CLAHE functions, applying one of them as a prefilter before generating the edgemask.

Parameters:

  • clip

    (VideoNode) –

    Source clip.

  • tsigma

    (float, default: 1 ) –

    Sigma value for TCanny edge detection. Defaults to 1.

  • brz

    (float, default: 0.122 ) –

    Binarization threshold (32-bit float scale). Defaults to 0.122.

  • sigmas

    Sigma values for the retinex prefilter. Defaults to [50, 200, 350].

  • limit

    Limit for CLAHE prefilter. Defaults to 0.0305.

  • tile

    Tile size for CLAHE prefilter. Defaults to 5.

Returns:

  • ConstantFormatVideoNode

    Edgemask clip with applied DRE prefiltering.

Source code
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def __call__(
    self, clip: vs.VideoNode, tsigma: float = 1, brz: float = 0.122, **kwargs: Any
) -> ConstantFormatVideoNode:
    """
    Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

    This function serves as a wrapper around the `retinex` and `vszip.CLAHE` functions,
    applying one of them as a prefilter before generating the edgemask.

    Args:
        clip: Source clip.
        tsigma: Sigma value for TCanny edge detection. Defaults to 1.
        brz: Binarization threshold (32-bit float scale). Defaults to 0.122.
        sigmas: Sigma values for the retinex prefilter. Defaults to [50, 200, 350].
        limit: Limit for CLAHE prefilter. Defaults to 0.0305.
        tile: Tile size for CLAHE prefilter. Defaults to 5.

    Returns:
        Edgemask clip with applied DRE prefiltering.
    """
    luma = get_y(clip)

    dreluma = self._prefilter(luma, **kwargs)

    tcanny = PrewittTCanny.edgemask(dreluma, sigma=tsigma, scale=1)
    tcanny = Morpho.minimum(tcanny, coords=Coordinates.CORNERS)

    kirsch = Kirsch(MagDirection.N | MagDirection.EAST).edgemask(luma)

    add_clip = ExprOp.ADD(tcanny, kirsch)

    if brz > 0:
        add_clip = Morpho.binarize(add_clip, brz)

    return ColorRange.FULL.apply(add_clip)

limited_linemask

limited_linemask(
    clip: VideoNode,
    sigmas: list[float] = [0.000125, 0.0025, 0.0055],
    detail_sigmas: list[float] = [0.011, 0.013],
    edgemasks: Sequence[GenericMaskT] = [Kirsch],
    **kwargs: Any
) -> ConstantFormatVideoNode
Source code
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def limited_linemask(
    clip: vs.VideoNode,
    sigmas: list[float] = [0.000125, 0.0025, 0.0055],
    detail_sigmas: list[float] = [0.011, 0.013],
    edgemasks: Sequence[GenericMaskT] = [Kirsch],
    **kwargs: Any,
) -> ConstantFormatVideoNode:
    clip_y = plane(clip, 0)

    return ExprOp.ADD(
        (normalize_mask(edge, clip_y, **kwargs) for edge in edgemasks),
        (tcanny_retinex(clip_y, s) for s in sigmas),
        (multi_detail_mask(clip_y, s) for s in detail_sigmas),
    )

luma_credit_mask

luma_credit_mask(
    clip: VideoNode,
    thr: float = 0.9,
    edgemask: GenericMaskT = FDoGTCanny,
    draft: bool = False,
    **kwargs: Any
) -> ConstantFormatVideoNode
Source code
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def luma_credit_mask(
    clip: vs.VideoNode, thr: float = 0.9, edgemask: GenericMaskT = FDoGTCanny, draft: bool = False, **kwargs: Any
) -> ConstantFormatVideoNode:
    y = plane(clip, 0)

    edge_mask = normalize_mask(edgemask, y, **kwargs)

    credit_mask = norm_expr([edge_mask, y], f"y {scale_mask(thr, 32, y)} > y 0 ? x min", func=ringing_mask)

    if not draft:
        credit_mask = Morpho.maximum(credit_mask, iterations=4)
        credit_mask = Morpho.inflate(credit_mask, iterations=2)

    return credit_mask

luma_mask

luma_mask(
    clip: VideoNode, thr_lo: float, thr_hi: float, invert: bool = True
) -> ConstantFormatVideoNode
Source code
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def luma_mask(clip: vs.VideoNode, thr_lo: float, thr_hi: float, invert: bool = True) -> ConstantFormatVideoNode:
    peak = get_peak_value(clip)

    lo, hi = (peak, 0) if invert else (0, peak)
    inv_pre, inv_post = (peak, "-") if invert else ("", "")

    thr_lo = scale_value(thr_lo, 32, clip)
    thr_hi = scale_value(thr_hi, 32, clip)

    return norm_expr(
        get_y(clip),
        f"x {thr_lo} < {lo} x {thr_hi} > {hi} {inv_pre} x {thr_lo} - {thr_lo} {thr_hi} - / {peak} * {inv_post} ? ?",
        func=ringing_mask,
    )

ringing_mask

ringing_mask(
    clip: VideoNode,
    rad: int = 2,
    brz: float = 0.35,
    thmi: float = 0.315,
    thma: float = 0.5,
    thlimi: float = 0.195,
    thlima: float = 0.392,
    credit_mask: GenericMaskT = Prewitt,
    **kwargs: Any
) -> ConstantFormatVideoNode
Source code
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def ringing_mask(
    clip: vs.VideoNode,
    rad: int = 2,
    brz: float = 0.35,
    thmi: float = 0.315,
    thma: float = 0.5,
    thlimi: float = 0.195,
    thlima: float = 0.392,
    credit_mask: GenericMaskT = Prewitt,
    **kwargs: Any,
) -> ConstantFormatVideoNode:
    assert check_variable(clip, ringing_mask)

    thmi, thma, thlimi, thlima = (scale_mask(t, 32, clip) for t in [thmi, thma, thlimi, thlima])

    blur_kernel = BlurMatrix.BINOMIAL(1, mode=ConvMode.SQUARE)

    edgemask = normalize_mask(credit_mask, plane(clip, 0), **kwargs)
    edgemask = limiter(edgemask)

    light = norm_expr(edgemask, f"x {thlimi} - {thma - thmi} / {ExprToken.RangeMax} *", func=ringing_mask)

    shrink = Morpho.dilation(light, rad)
    shrink = Morpho.binarize(shrink, brz)
    shrink = Morpho.erosion(shrink, 2)
    shrink = blur_kernel(shrink, passes=2)

    strong = norm_expr(edgemask, f"x {thmi} - {thlima - thlimi} / {ExprToken.RangeMax} *", func=ringing_mask)
    expand = Morpho.dilation(strong, iterations=rad)

    mask = norm_expr([expand, strong, shrink], "x y z max -", func=ringing_mask)

    return ExprOp.convolution("x", blur_kernel, premultiply=2, multiply=2, clamp=True)(mask)

tcanny_retinex

tcanny_retinex(
    clip: VideoNode,
    thr: float,
    sigma: Sequence[float] = [50, 200, 350],
    blur_sigma: float = 1.0,
) -> ConstantFormatVideoNode
Source code
102
103
104
105
106
107
108
109
110
111
def tcanny_retinex(
    clip: vs.VideoNode, thr: float, sigma: Sequence[float] = [50, 200, 350], blur_sigma: float = 1.0
) -> ConstantFormatVideoNode:
    blur = gauss_blur(clip, blur_sigma)

    msrcp = retinex(blur, sigma, upper_thr=thr, fast=True, func=tcanny_retinex)

    tcunnied = msrcp.tcanny.TCanny(mode=1, sigma=1)

    return Morpho.minimum(tcunnied, coords=Coordinates.CORNERS)