Skip to content

edge_funcs

Classes:

  • dre_edgemask

    Edgemask with dynamic range enhancement prefiltering.

Functions:

dre_edgemask

Bases: CustomEnum

Edgemask with dynamic range enhancement prefiltering.

Methods:

  • __call__

    Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

Attributes:

  • CLAHE

    Contrast Limited Adaptive Histogram Equalization.

  • RETINEX

    Retinex-based edgemask.

CLAHE class-attribute instance-attribute

CLAHE = cast('dre_edgemask', object())

Contrast Limited Adaptive Histogram Equalization. Based on the OpenCV implementation

RETINEX class-attribute instance-attribute

RETINEX = cast('dre_edgemask', object())

Retinex-based edgemask.

__call__

__call__(
    clip: VideoNode,
    sigma: float = 1,
    brz: float = 0.122,
    operator: EdgeDetectLike = Prewitt,
    *,
    sigmas: Sequence[float] = [50, 200, 350],
    lower_thr: float = 0.001,
    upper_thr: float = 0.005,
    **kwargs: Any
) -> VideoNode
__call__(
    clip: VideoNode,
    sigma: float = 1,
    brz: float = 0.122,
    operator: EdgeDetectLike = Prewitt,
    *,
    limit: float = 0.0305,
    tile: int = 5
) -> VideoNode
__call__(
    clip: VideoNode,
    sigma: float = 1,
    brz: float = 0.122,
    operator: EdgeDetectLike = Prewitt,
    **kwargs: Any
) -> VideoNode
__call__(
    clip: VideoNode,
    sigma: float = 1,
    brz: float = 0.122,
    operator: EdgeDetectLike = Prewitt,
    **kwargs: Any
) -> VideoNode

Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

This function serves as a wrapper around the retinex and vszip.CLAHE functions, applying one of them as a prefilter before generating the edgemask.

Parameters:

  • clip

    (VideoNode) –

    Source clip.

  • sigma

    (float, default: 1 ) –

    Standard deviation of the Gaussian kernel for edge detection. Defaults to 1.

  • brz

    (float, default: 0.122 ) –

    Binarization threshold (32-bit float scale). Defaults to 0.122.

  • operator

    (EdgeDetectLike, default: Prewitt ) –

    Edge detect operator.

  • **kwargs

    (Any, default: {} ) –

    Additional keyword arguments for the selected prefilter:

    • RETINEX. See retinex for details:
      • sigmas: List of Gaussian sigmas for multi-scale retinex (MSR).
      • lower_thr: Lower threshold percentile for output normalization
      • upper_thr: Upper threshold percentile for output normalization.
    • CLAHE. See vszip.CLAHE for details.
      • limit: Threshold for contrast limiting (32-bit float scale, unlike CLAHE plugin). Defaults to 0.0305.
      • tile: Tile size for histogram equalization. Defaults to 5.

Returns:

  • VideoNode

    Edgemask clip with applied DRE prefiltering.

Source code in vsmasktools/edge_funcs.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def __call__(
    self,
    clip: vs.VideoNode,
    sigma: float = 1,
    brz: float = 0.122,
    operator: EdgeDetectLike = Prewitt,
    **kwargs: Any,
) -> vs.VideoNode:
    """
    Creates an edgemask with dynamic range enhancement (DRE) prefiltering.

    This function serves as a wrapper around the `retinex` and `vszip.CLAHE` functions,
    applying one of them as a prefilter before generating the edgemask.

    Args:
        clip: Source clip.
        sigma: Standard deviation of the Gaussian kernel for edge detection. Defaults to 1.
        brz: Binarization threshold (32-bit float scale). Defaults to 0.122.
        operator: Edge detect operator.
        **kwargs: Additional keyword arguments for the selected prefilter:

               - RETINEX. See [retinex][vsmasktools.retinex] for details:
                * `sigmas`: List of Gaussian sigmas for multi-scale retinex (MSR).
                * `lower_thr`: Lower threshold percentile for output normalization
                * `upper_thr`: Upper threshold percentile for output normalization.
               - CLAHE. See [vszip.CLAHE](https://github.com/dnjulek/vapoursynth-zip/wiki/CLAHE) for details.
                * `limit`: Threshold for contrast limiting (32-bit float scale, unlike CLAHE plugin).
                  Defaults to 0.0305.
                * `tile`: Tile size for histogram equalization. Defaults to 5.

    Returns:
        Edgemask clip with applied DRE prefiltering.
    """
    luma = get_y(clip)

    dreluma = self._prefilter(luma, **kwargs)

    if sigma:
        dreluma = gauss_blur(dreluma, sigma)

    dreluma_edges = EdgeDetect.ensure_obj(operator, self.__class__).edgemask(dreluma)
    dreluma_edges = Morpho.minimum(dreluma_edges, coords=Coordinates.CORNERS)

    merge = norm_expr([dreluma_edges, Kirsch.edgemask(luma)], "x y + mask_max min", func=self.__class__)

    if brz:
        return Morpho.binarize(merge, brz)

    return merge

limited_linemask

limited_linemask(
    clip: VideoNode,
    sigmas: list[float] = [0.000125, 0.0025, 0.0055],
    detail_sigmas: list[float] = [0.011, 0.013],
    edgemasks: Sequence[MaskLike] = [Kirsch],
    **kwargs: Any
) -> VideoNode
Source code in vsmasktools/edge_funcs.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def limited_linemask(
    clip: vs.VideoNode,
    sigmas: list[float] = [0.000125, 0.0025, 0.0055],
    detail_sigmas: list[float] = [0.011, 0.013],
    edgemasks: Sequence[MaskLike] = [Kirsch],
    **kwargs: Any,
) -> vs.VideoNode:
    clip_y = plane(clip, 0)

    return ExprOp.ADD(
        (normalize_mask(edge, clip_y, **kwargs) for edge in edgemasks),
        (tcanny_retinex(clip_y, s) for s in sigmas),
        (multi_detail_mask(clip_y, s) for s in detail_sigmas),
    )

luma_credit_mask

luma_credit_mask(
    clip: VideoNode,
    thr: float = 0.9,
    edgemask: MaskLike = FDoG,
    draft: bool = False,
    **kwargs: Any
) -> VideoNode
Source code in vsmasktools/edge_funcs.py
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def luma_credit_mask(
    clip: vs.VideoNode, thr: float = 0.9, edgemask: MaskLike = FDoG, draft: bool = False, **kwargs: Any
) -> vs.VideoNode:
    y = plane(clip, 0)

    edge_mask = normalize_mask(edgemask, y, **kwargs)

    credit_mask = norm_expr([edge_mask, y], f"y {scale_mask(thr, 32, y)} > y 0 ? x min", func=ringing_mask)

    if not draft:
        credit_mask = Morpho.maximum(credit_mask, iterations=4)
        credit_mask = Morpho.inflate(credit_mask, iterations=2)

    return credit_mask

luma_mask

luma_mask(
    clip: VideoNode, thr_lo: float, thr_hi: float, invert: bool = True
) -> VideoNode
Source code in vsmasktools/edge_funcs.py
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def luma_mask(clip: vs.VideoNode, thr_lo: float, thr_hi: float, invert: bool = True) -> vs.VideoNode:
    peak = get_peak_value(clip)

    lo, hi = (peak, 0) if invert else (0, peak)
    inv_pre, inv_post = (peak, "-") if invert else ("", "")

    thr_lo = scale_value(thr_lo, 32, clip)
    thr_hi = scale_value(thr_hi, 32, clip)

    return norm_expr(
        get_y(clip),
        f"x {thr_lo} < {lo} x {thr_hi} > {hi} {inv_pre} x {thr_lo} - {thr_lo} {thr_hi} - / {peak} * {inv_post} ? ?",
        func=ringing_mask,
    )

ringing_mask

ringing_mask(
    clip: VideoNode,
    rad: int = 2,
    brz: float = 0.35,
    thmi: float = 0.315,
    thma: float = 0.5,
    thlimi: float = 0.195,
    thlima: float = 0.392,
    credit_mask: MaskLike = Prewitt,
    **kwargs: Any
) -> VideoNode
Source code in vsmasktools/edge_funcs.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def ringing_mask(
    clip: vs.VideoNode,
    rad: int = 2,
    brz: float = 0.35,
    thmi: float = 0.315,
    thma: float = 0.5,
    thlimi: float = 0.195,
    thlima: float = 0.392,
    credit_mask: MaskLike = Prewitt,
    **kwargs: Any,
) -> vs.VideoNode:
    thmi, thma, thlimi, thlima = (scale_mask(t, 32, clip) for t in [thmi, thma, thlimi, thlima])

    blur_kernel = BlurMatrix.BINOMIAL(1, mode=ConvMode.SQUARE)

    edgemask = normalize_mask(credit_mask, plane(clip, 0), **kwargs)
    edgemask = limiter(edgemask, mask=True, func=ringing_mask)

    light = norm_expr(edgemask, f"x {thlimi} - {thma - thmi} / {ExprToken.RangeMax} *", func=ringing_mask)

    shrink = Morpho.dilation(light, rad)
    shrink = Morpho.binarize(shrink, brz)
    shrink = Morpho.erosion(shrink, 2)
    shrink = blur_kernel(shrink, passes=2)

    strong = norm_expr(edgemask, f"x {thmi} - {thlima - thlimi} / {ExprToken.RangeMax} *", func=ringing_mask)
    expand = Morpho.dilation(strong, iterations=rad)

    mask = norm_expr([expand, strong, shrink], "x y z max -", func=ringing_mask)

    return ExprOp.convolution("x", blur_kernel, premultiply=2, multiply=2, clamp=True)(mask)

tcanny_retinex

tcanny_retinex(
    clip: VideoNode,
    thr: float,
    sigma: Sequence[float] = [50, 200, 350],
    blur_sigma: float = 1.0,
) -> VideoNode
Source code in vsmasktools/edge_funcs.py
 97
 98
 99
100
101
102
103
104
105
106
def tcanny_retinex(
    clip: vs.VideoNode, thr: float, sigma: Sequence[float] = [50, 200, 350], blur_sigma: float = 1.0
) -> vs.VideoNode:
    blur = gauss_blur(clip, blur_sigma)

    msrcp = retinex(blur, sigma, upper_thr=thr, fast=True, func=tcanny_retinex)

    tcunnied = msrcp.tcanny.TCanny(mode=1, sigma=1)

    return Morpho.minimum(tcunnied, coords=Coordinates.CORNERS)