onnx ¶
This module implements scalers for ONNX models.
Classes:
-
ArtCNN
–Super-Resolution Convolutional Neural Networks optimised for anime.
-
BaseOnnxScaler
–Abstract generic scaler class for an ONNX model.
-
GenericOnnxScaler
–Generic scaler class for an ONNX model.
-
Waifu2x
–Well known Image Super-Resolution for Anime-Style Art.
Functions:
-
autoselect_backend
–Try to select the best backend for the current system.
ArtCNN ¶
ArtCNN(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
Super-Resolution Convolutional Neural Networks optimised for anime.
A quick reminder that vs-mlrt does not ship these in the base package.
You will have to grab the extended models pack or get it from the repo itself.
(And create an "ArtCNN" folder in your models folder yourself)
https://github.com/Artoriuz/ArtCNN/releases/latest
Defaults to R8F64.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Classes:
-
C16F64
–Very fast and good enough for AA purposes but the onnx variant is officially deprecated.
-
C16F64_Chroma
–The bigger of the two chroma models.
-
C16F64_DS
–The same as C16F64 but intended to also sharpen and denoise.
-
C4F16
–This has 4 internal convolution layers with 16 filters each.
-
C4F16_DS
–The same as C4F16 but intended to also sharpen and denoise.
-
C4F32
–This has 4 internal convolution layers with 32 filters each.
-
C4F32_Chroma
–The smaller of the two chroma models.
-
C4F32_DS
–The same as C4F32 but intended to also sharpen and denoise.
-
R16F96
–The biggest model. Can compete with or outperform Waifu2x Cunet.
-
R8F64
–A smaller and faster version of R16F96 but very competitive.
-
R8F64_Chroma
–The new and fancy big chroma model.
-
R8F64_DS
–The same as R8F64 but intended to also sharpen and denoise.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
C16F64 ¶
C16F64(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
Very fast and good enough for AA purposes but the onnx variant is officially deprecated.
This has 16 internal convolution layers with 64 filters each.
ONNX files available at https://github.com/Artoriuz/ArtCNN/tree/388b91797ff2e675fd03065953cc1147d6f972c2/ONNX
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C16F64.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C16F64_Chroma ¶
C16F64_Chroma(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNChroma
The bigger of the two chroma models.
These don't double the input clip and rather just try to enhance the chroma using luma information.
Example usage:
from vsscale import ArtCNN
chroma_upscaled = ArtCNN.C16F64_Chroma.scale(clip)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C16F64_DS ¶
C16F64_DS(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
The same as C16F64 but intended to also sharpen and denoise.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C16F64_DS.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C4F16 ¶
C4F16(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
This has 4 internal convolution layers with 16 filters each.
The currently fastest variant. Not really recommended for any filtering.
Should strictly be used for real-time applications and even then the other non R ones should be fast enough...
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C4F16.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C4F16_DS ¶
C4F16_DS(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
The same as C4F16 but intended to also sharpen and denoise.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C4F16_DS.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C4F32 ¶
C4F32(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
This has 4 internal convolution layers with 32 filters each.
If you need an even faster model.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C4F32.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C4F32_Chroma ¶
C4F32_Chroma(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNChroma
The smaller of the two chroma models.
These don't double the input clip and rather just try to enhance the chroma using luma information.
Example usage:
from vsscale import ArtCNN
chroma_upscaled = ArtCNN.C4F32_Chroma.scale(clip)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
C4F32_DS ¶
C4F32_DS(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
The same as C4F32 but intended to also sharpen and denoise.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.C4F32_DS.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
R16F96 ¶
R16F96(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
The biggest model. Can compete with or outperform Waifu2x Cunet.
Also quite a bit slower but is less heavy on vram.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.R16F96.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
R8F64 ¶
R8F64(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
A smaller and faster version of R16F96 but very competitive.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.R8F64.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
R8F64_Chroma ¶
R8F64_Chroma(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNChroma
The new and fancy big chroma model.
These don't double the input clip and rather just try to enhance the chroma using luma information.
Example usage:
from vsscale import ArtCNN
chroma_upscaled = ArtCNN.R8F64_Chroma.scale(clip)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
R8F64_DS ¶
R8F64_DS(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNNLuma
The same as R8F64 but intended to also sharpen and denoise.
Example usage:
from vsscale import ArtCNN
doubled = ArtCNN.R8F64_DS.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseArtCNN ¶
BaseArtCNN(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseOnnxScaler
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
–Performs preprocessing on the clip prior to inference.
-
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Performs preprocessing on the clip prior to inference.
Source code
224 225 226 227 228 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseArtCNNChroma ¶
BaseArtCNNChroma(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNN
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseArtCNNLuma ¶
BaseArtCNNLuma(
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseArtCNN
Parameters:
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
301 302 303 304 305 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
309 310 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseOnnxScaler ¶
BaseOnnxScaler(
model: SPathLike | None = None,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseGenericScaler
, ABC
Abstract generic scaler class for an ONNX model.
Parameters:
-
model
¶SPathLike | None
, default:None
) –Path to the ONNX model file.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
–Runs inference on the given video clip using the configured model and backend.
-
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
–Performs preprocessing on the clip prior to inference.
-
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Runs inference on the given video clip using the configured model and backend.
Source code
237 238 239 240 241 242 243 244 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Performs preprocessing on the clip prior to inference.
Source code
224 225 226 227 228 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseWaifu2x ¶
BaseWaifu2x(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseOnnxScaler
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
–Performs preprocessing on the clip prior to inference.
-
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Performs preprocessing on the clip prior to inference.
Source code
224 225 226 227 228 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BaseWaifu2xRGB ¶
BaseWaifu2xRGB(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2x
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
GenericOnnxScaler ¶
GenericOnnxScaler(
model: SPathLike | None = None,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseOnnxScaler
Generic scaler class for an ONNX model.
Example usage:
from vsscale import GenericOnnxScaler
scaled = GenericOnnxScaler("path/to/model.onnx").scale(clip, ...)
# For Windows paths:
scaled = GenericOnnxScaler(r"path\to\model.onnx").scale(clip, ...)
Parameters:
-
model
¶SPathLike | None
, default:None
) –Path to the ONNX model file.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
–Runs inference on the given video clip using the configured model and backend.
-
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
–Performs preprocessing on the clip prior to inference.
-
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Runs inference on the given video clip using the configured model and backend.
Source code
237 238 239 240 241 242 243 244 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Performs preprocessing on the clip prior to inference.
Source code
224 225 226 227 228 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
Waifu2x ¶
Waifu2x(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Well known Image Super-Resolution for Anime-Style Art.
Defaults to Cunet.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Classes:
-
AnimeStyleArt
–Waifu2x model for anime-style art.
-
AnimeStyleArtRGB
–RGB version of the anime-style model.
-
Cunet
–CUNet (Compact U-Net) model for anime art.
-
Photo
–Waifu2x model trained on real-world photographic images.
-
SwinUnetArt
–Swin-Unet-based model trained on anime-style images.
-
SwinUnetArtScan
–Swin-Unet model trained on anime scans.
-
SwinUnetPhoto
–Swin-Unet model trained on photographic content.
-
SwinUnetPhotoV2
–Improved Swin-Unet model for photos (v2).
-
UpConv7AnimeStyleArt
–UpConv7 model variant optimized for anime-style images.
-
UpConv7Photo
–UpConv7 model variant optimized for photographic images.
-
UpResNet10
–UpResNet10 model offering a balance of speed and quality.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
AnimeStyleArt ¶
AnimeStyleArt(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2x
Waifu2x model for anime-style art.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.AnimeStyleArt.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
–Handles postprocessing of the model's output after inference.
-
preprocess_clip
–Performs preprocessing on the clip prior to inference.
-
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Handles postprocessing of the model's output after inference.
Source code
230 231 232 233 234 235 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Performs preprocessing on the clip prior to inference.
Source code
224 225 226 227 228 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
AnimeStyleArtRGB ¶
AnimeStyleArtRGB(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
RGB version of the anime-style model.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.AnimeStyleArtRGB.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
Cunet ¶
Cunet(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
CUNet (Compact U-Net) model for anime art.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.Cunet.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
779 780 781 782 783 784 785 786 787 788 789 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
791 792 793 794 795 796 797 798 799 800 801 802 803 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method. Additional Notes for the Cunet model: - The model can cause artifacts around the image edges. To mitigate this, mirrored padding is applied to the image before inference. This behavior can be disabled by settinginference_no_pad=True
. - A tint issue is also present but it is not constant. It leaves flat areas alone but tints detailed areas. Since most people will use Cunet to rescale details, the tint fix is enabled by default. This behavior can be disabled withpostprocess_no_tint_fix=True
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
Photo ¶
Photo(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Waifu2x model trained on real-world photographic images.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.Photo.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
SwinUnetArt ¶
SwinUnetArt(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Swin-Unet-based model trained on anime-style images.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.SwinUnetArt.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
SwinUnetArtScan ¶
SwinUnetArtScan(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Swin-Unet model trained on anime scans.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.SwinUnetArtScan.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
SwinUnetPhoto ¶
SwinUnetPhoto(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Swin-Unet model trained on photographic content.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.SwinUnetPhoto.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
SwinUnetPhotoV2 ¶
SwinUnetPhotoV2(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
Improved Swin-Unet model for photos (v2).
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.SwinUnetPhotoV2.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
UpConv7AnimeStyleArt ¶
UpConv7AnimeStyleArt(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
UpConv7 model variant optimized for anime-style images.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.UpConv7AnimeStyleArt.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
UpConv7Photo ¶
UpConv7Photo(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
UpConv7 model variant optimized for photographic images.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.UpConv7Photo.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
UpResNet10 ¶
UpResNet10(
scale: Literal[1, 2, 4] = 2,
noise: Literal[-1, 0, 1, 2, 3] = -1,
backend: Any | None = None,
tiles: int | tuple[int, int] | None = None,
tilesize: int | tuple[int, int] | None = None,
overlap: int | tuple[int, int] | None = None,
max_instances: int = 2,
*,
kernel: KernelT = Catrom,
scaler: ScalerT | None = None,
shifter: KernelT | None = None,
**kwargs: Any
)
Bases: BaseWaifu2xRGB
UpResNet10 model offering a balance of speed and quality.
Example usage:
from vsscale import Waifu2x
doubled = Waifu2x.UpResNet10.scale(clip, clip.width * 2, clip.height * 2)
Parameters:
-
scale
¶Literal[1, 2, 4]
, default:2
) –Upscaling factor. 1 = no uspcaling, 2 = 2x, 4 = 4x.
-
noise
¶Literal[-1, 0, 1, 2, 3]
, default:-1
) –Noise reduction level. -1 = none, 0 = low, 1 = medium, 2 = high, 3 = highest.
-
backend
¶Any | None
, default:None
) –The backend to be used with the vs-mlrt framework. If set to None, the most suitable backend will be automatically selected, prioritizing fp16 support.
-
tiles
¶int | tuple[int, int] | None
, default:None
) –Whether to split the image into multiple tiles. This can help reduce VRAM usage, but note that the model's behavior may vary when they are used.
-
tilesize
¶int | tuple[int, int] | None
, default:None
) –The size of each tile when splitting the image (if tiles are enabled).
-
overlap
¶int | tuple[int, int] | None
, default:None
) –The size of overlap between tiles.
-
max_instances
¶int
, default:2
) –Maximum instances to spawn when scaling a variable resolution clip.
-
kernel
¶KernelT
, default:Catrom
) –Base kernel to be used for certain scaling/shifting/resampling operations. Defaults to Catrom.
-
scaler
¶ScalerT | None
, default:None
) –Scaler used for scaling operations. Defaults to kernel.
-
shifter
¶KernelT | None
, default:None
) –Kernel used for shifting operations. Defaults to kernel.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to pass to the backend. See the vsmlrt backend's docstring for more details.
Methods:
-
calc_tilesize
–Reimplementation of vsmlrt.calc_tilesize helper function
-
ensure_obj
– -
from_param
– -
get_clean_kwargs
– -
get_implemented_funcs
– -
get_scale_args
– -
inference
– -
kernel_radius
– -
multi
– -
postprocess_clip
– -
preprocess_clip
– -
pretty_string
– -
scale
–Scale the given clip using the ONNX model.
-
supersample
–
Attributes:
-
backend
– -
kernel
– -
kwargs
(KwargsT
) –Arguments passed to the internal scale function
-
max_instances
– -
model
– -
noise
(Literal[-1, 0, 1, 2, 3]
) – -
overlap
– -
overlap_h
– -
overlap_w
– -
scale_function
(Callable[..., VideoNode]
) –Scale function called internally when scaling
-
scale_w2x
(Literal[1, 2, 4]
) – -
scaler
– -
shifter
– -
tiles
– -
tilesize
–
Source code
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
kwargs instance-attribute
¶
kwargs: KwargsT = kwargs
Arguments passed to the internal scale function
scale_function instance-attribute
¶
scale_function: Callable[..., VideoNode]
Scale function called internally when scaling
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
calc_tilesize ¶
Reimplementation of vsmlrt.calc_tilesize helper function
Source code
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
ensure_obj classmethod
¶
ensure_obj(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> BaseScalerT
Source code
201 202 203 204 205 206 207 208 |
|
from_param classmethod
¶
from_param(
scaler: str | type[BaseScalerT] | BaseScalerT | None = None,
/,
func_except: FuncExceptT | None = None,
) -> type[BaseScalerT]
Source code
192 193 194 195 196 197 198 199 |
|
get_clean_kwargs ¶
Source code
216 217 |
|
get_implemented_funcs ¶
Source code
299 300 |
|
get_scale_args ¶
get_scale_args(
clip: VideoNode,
shift: tuple[TopShift, LeftShift] = (0, 0),
width: int | None = None,
height: int | None = None,
*funcs: Callable[..., Any],
**kwargs: Any
) -> KwargsT
Source code
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
inference ¶
inference(
clip: ConstantFormatVideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
kernel_radius ¶
kernel_radius() -> int
Source code
210 211 212 213 214 |
|
multi ¶
multi(
clip: VideoNode,
multi: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
272 273 274 275 276 277 278 279 280 281 |
|
postprocess_clip ¶
postprocess_clip(
clip: VideoNode, input_clip: VideoNode, **kwargs: Any
) -> ConstantFormatVideoNode
Source code
627 628 629 630 631 632 633 634 |
|
preprocess_clip ¶
preprocess_clip(clip: VideoNode, **kwargs: Any) -> ConstantFormatVideoNode
Source code
623 624 625 |
|
pretty_string ¶
pretty_string() -> str
Source code
225 226 227 |
|
scale ¶
scale(
clip: VideoNode,
width: int | None = None,
height: int | None = None,
shift: tuple[float, float] = (0, 0),
**kwargs: Any
) -> ConstantFormatVideoNode
Scale the given clip using the ONNX model.
Parameters:
-
clip
¶VideoNode
) –The input clip to be scaled.
-
width
¶int | None
, default:None
) –The target width for scaling. If None, the width of the input clip will be used.
-
height
¶int | None
, default:None
) –The target height for scaling. If None, the height of the input clip will be used.
-
shift
¶tuple[float, float]
, default:(0, 0)
) –A tuple representing the shift values for the x and y axes.
-
**kwargs
¶Any
, default:{}
) –Additional arguments to be passed to the
preprocess_clip
,postprocess_clip
,inference
, and_final_scale
methods. Use the prefixpreprocess_
orpostprocess_
to pass an argument to the respective method. Use the prefixinference_
to pass an argument to the inference method.
Returns:
-
ConstantFormatVideoNode
–The scaled clip.
Source code
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
supersample ¶
supersample(
clip: VideoNode,
rfactor: float = 2.0,
shift: tuple[TopShift, LeftShift] = (0, 0),
**kwargs: Any
) -> VideoNode
Source code
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
autoselect_backend ¶
Try to select the best backend for the current system. If the system has an NVIDIA GPU: TRT > CUDA (ORT) > Vulkan > OpenVINO GPU Else: DirectML (D3D12) > MIGraphX > Vulkan > CPU (ORT) > CPU OpenVINO
Parameters:
Returns:
-
Any
–The selected backend.
Source code
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|